Bootstrap Procedures for Recursive Estimation Schemes with Applications to Forecast Model Selection
نویسندگان
چکیده
منابع مشابه
Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model
In recent years it has become apparent that many of the classical testing procedures used to select amongst alternative economic theories and economic models are not realistic. In particular, researchers have become more aware of the fact that parameter estimation error and data dependence play a crucial role in test statistic limiting distributions, a role which had hitherto been ignored to a ...
متن کاملNonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes*
Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present two examples where predictive accuracy tests are made operational using our new bootstrap procedures. In one application, we outline a consistent test for out-of-sample nonlinear Granger causality, and in the other we ou...
متن کاملModel Selection, Estimation, and Bootstrap Smoothing
Classical statistical theory ignores model selection in assessing estimation accuracy. Here we consider bootstrap methods for computing standard errors and confidence intervals that take model selection into account. The methodology involves bootstrap smoothing, also known as bagging, to tame the erratic discontinuities of selection-based estimators. A projection theorem then provides standard ...
متن کاملAn Improved Hybrid Model with Automated Lag Selection to Forecast Stock Market
Objective: In general, financial time series such as stock indexes have nonlinear, mutable and noisy behavior. Structural and statistical models and machine learning-based models are often unable to accurately predict series with such a behavior. Accordingly, the aim of the present study is to present a new hybrid model using the advantages of the GMDH method and Non-dominated Sorting Genetic A...
متن کاملBootstrap for neural model selection
Bootstrap techniques (also called resampling computation techniques) have introduced new advances in modeling and model evaluation [10]. Using resampling methods to construct a series of new samples which are based on the original data set, allows to estimate the stability of the parameters. Properties such as convergence and asymptotic normality can be checked for any particular observed data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2004
ISSN: 1556-5068
DOI: 10.2139/ssrn.592821